
Abstract

We propose a method to generate penumbrae (half shadows) in

scenes that are composed of simple 3-D geometric primitives. Penum-

brae occur when objects are illuminated by a light source with �nite

extent. Traditional methods to generate penumbrae are based either

on extensive geometric reasoning or on signal processing (sampling and

smoothing). In either way they have a high computational complexity.

We propose a third alternative that is based on function evaluation,

not unlike the way in which implicit surfaces are de�ned by means of

evaluating suitable �eld functions. Our method starts from a physi-

cally correct model for the shape of penumbrae, and proposes some

ways to compose the penumbrae for individual geometric primitives.

We discuss the e�ciency issues related to our method, and we indicate

some restrictions for its application.

1

Soft Shadows with Soft Objects: a proof of concept

Kees van Overveld

Philips Research and Department of Mathematics and Computing Science

Eindhoven University of Technology�

Mark Tigges and BrianWyvill

Department of Computer Science

University of Calgaryy

September 5, 1999

Keywords shadows, penumbrae, implicit surfaces

1 Introduction

In order to improve the quality of rendered images of 3-D scenes, shadows

should be taken into account. Shadows that are cast onto a surface S can

take the form of umbrae, i.e. regions in S where no part of the light source

can be seen, and penumbrae, i.e. regions in S where part of the light source

can be seen. Regions in S where all of the light source can be seen are

not in the shadow. If the extent of the light source is negligable, there is no

penumbra. This is a common assumption in computer graphics for e�ciency

reasons.

In order to model penumbrae, two basically di�erent approaches have been

followed:

� A geometric approach: based on the notion of shadow volumes, used

to model umbrae (as �rst proposed by Crow in 1977, [?]), one can

�Address: P.O.Box 513, 5600 MB, Eindhoven, The Netherlands. Email:

wsinkvo@info.win.tue.nl
yAddress: 2500 University Drive N.W., Calgary, Alberta,Canada, T2N 1N4 Email:

[mtiggesjblob]@cpsc.ucalgary.ca

2

apply geometric operations like Minkowsky sums or Boolean opera-

tions in order to construct polyhedral shadow volumes that also have

penumbrae components ([?],[?],[?]).

� A signal processing approach: the amount of light on any given point

of S is really a surface integral over a continuous light distribution

function. This continuous function can be sampled in the context of

ray tracing (so called distributed ray tracing, [?]) or in the context of

radiosity methods, [?].

The two methods above each have their own advantages and disadvantages.

The geometric approach works in object space, and hence it is resolution in-

dependent. The complexity of the method however depends on the number

Np of polygons in the 3-D model, and unless advanced computational geo-

metric methods are used, the complexity scales proportional to Np
2. This

holds both for the construction of the penumbrae shadow volumes and for

their interrogation during rendering. Also, many modelling paradigms (such

as free-form surfaces, patches, CSG objects with (double) curved primitives,

implicit surfaces, et cetera) do't lend themselves to easy computation of poly-

hedral penumbrae shadow volumes. Finally, although for polygonal scenes,

polyhedral penumbrae shadow volumes give exact shapes of the borders of

the umbrae and penumbrae regions, they don't contain information on how

the shadow density function fsd = fsd(x) varies as a function of position

x; x 2 R3 in the penumbra. We only know that in the umbrae, fsd = 1 and

outside the penumbra, fsd = 0. So there is additional heuristics needed in

order to de�ne fsd in between.

The signal processing approach has to rely on some form of sampling and re-

construction, and hence it is resolution dependent. The reconstruction part

has to contain a low-pass �lter, otherwise either aliasing or noisy penum-

brae result. The complexity, in general, will be of the order of the number

of pixels times the number of samples to take from the (area) light source.

Due to the sampling, a true approximation to the shadow density function

fsd can be obtained.

Although both approaches have received ample attention in the literature

after the initial results as cited above, penumbrae continue to be a very time

consuming feature in rendering. We therefore think it appropriate to propose

a new approach, which can be classi�ed as a functional approach. It is similar

to the geometric approach in that it constructs an explicit representation for

3

what we call a penumbra volume. The method also focuses on the shape of

the umbra and penumbra regions rather than on the shadow density function

within the penumbra region. But since shadow density functions are slowly

varying functions, and the human visual perception system is much more

sensitive to high contrasts in images, for most applications it will be easy to

use a similar heuristic as in the geometric approach. In contrast with the

geometric approach our method can easily cope with non-polygonal shadow

casting objects, and also interrogation is much more e�cient than with

polyhedron-based geometric models for penumbrae.

The sequel of this paper is organised as follows. In section 2, we elaborate

on the idea of the functional approach to penumbrae, and we list some

assumptions on which it is based. As an example we elaborate on penumbra

functions for a class of implicit surface models in section 3. We present the

�rst results of our preliminar implementation in section 4, and we discuss

the merits of the method in the concluding section.

2 Penumbra functions

2.1 De�nition

A penumbra function fsd is a function that returns (an approximation) to

the shadow density for a given light source as a function of the position in

space as a value between 0 (full illumination) and 1 (full shadow).

In the signal processing approach, this function is obtained via reconstruc-

tion based on a �nite number of samples.

In the geometric approach, this function is obtained as a heuristic interpo-

lation over a geometrically de�ned domain (namely, the penumbra region).

In our functional approach the value of fsd also results from a heuristic in-

terpolation (see section 3), but it is composed of a number of components,

where every component is the penumbra function for one of the primitive

shapes in the scene. All components can be computed independently, so

the complexity for interrogating the total penumbra function is linear in

the number of primitive shapes. This is much more e�cient than in the

geometric approach where every interrogation involves inside-outside tests

against complex polyhedral objects, followed by an interpolation in a com-

plex shaped domain. It is also more e�cient than in the signal processing

4

approach, since we dont require multiple samples, and if fsd is smooth, there

can be no noise or aliasing artefacts.

2.2 Composing penumbra functions for shape primitives

The composition of penumbra functions is related to the way in which the

primitive shapes in the scene are composed. We elaborate on some cases.

� If a Boolean union operator is used for the primitive shapes, we propose

to take the maximum of the penumbra functions. This is correct for

the shapes of the umbra and penumbra regions. Indeed: if one of

the penumbra functions fsd;i returns 1, we are in the umbra of one

object and the addition of other objects cannot decrease the shadow

density1. Similarly, the resulting penumbra function can only be 0 if

all contributing penumbra functions report 0. Taking the maximum

of all penumbra functions may be incorrect for the distribution of

fsd values within the penumbra, but since these values result from

heuristic approaximations anyway, it is a reasonable approximation

and produces good results in practice.

� If the primitive shapes are so called soft objects, as de�ned in [?] and

[?], we construct the resulting object by adding so called �eld values.

A �eld value for a soft object is a smooth function vi = vi(x); x 2 R3

that returns a value between 0 and 1. The total �eld value is the sum

of all vi in a given point, and the surface of the resulting soft object

is the isosurface fx 2 R3j
P

i vi(x) = 0:5g. Similar to the addition of

the �eld values in order to obtain the resulting �eld function, we add

the values for the corresponding penumbra functions fsd;i and clamp

the resulting value against 0...1.

� Instead of simply adding �eld values in order to get soft blends between

primitive shapes, say v1 and v2, as in [?], we can also take the maximum

and add a contribution in the form of a decreasing positive function

of jv1 � v2j. Again we can apply the same method to the associated

penumbra functions.

1As a consequence, we may stop evaluating penumbra functions as soon as a value 1

is encountered; this saves computational e�ort.

5

In general, our approach assumes that compound shapes are constructed in

such a way that, applying the same construction operator to the penumbra

functions that are associated to the indiviual shape primitives, a plausible

resulting total penumbra function results. In particular, this means that e.g.

a Boolean subtraction operator is not allowed.

2.3 Using penumbra functions in rendering

The penumbra function can be used both in the context of scan conversion

and ray tracing. In scan conversion, the evaluation of fsd takes place just

before pixel shading. In the context of ray tracing, evaluation of fsd saves

shooting (multiple) shadow rays.

Furthermore, penumbra functions could serve in the context of rendering

scenes with participating media (we have not yet elaborated on this appli-

cation).

3 An example of penumbra functions: implicit sur-

faces

We elaborate on the implementation of penumbra functions for three types

of implicit primitives.

3.1 An implicit sphere

An implicit sphere is parameterised by a centre point, p, and a radius rp. A

possible de�nition is

fx 2 R3
j(x� p � x� p)� rp

2 = 0g:

Here, (�) denotes the dot product. Let the light source be centered at

position s; assume that it is a sphere with radius rs. In order to �nd fsd(x),

we proceed as follows (see also Fig. 1). We �rst project x onto the line

l : x = p+ �(p� s); call the projection �x: �x = p+ �(p� s). Requiring that

(x� �x � p� s) = 0, we �nd that

� = �
(p� x � p� s)

(p� s � p� s)
:

6

penumbra

penumbra

umbra

s

p

l

rs

rp

x
d

x

d
d
1
2

Figure 1: Figure 1: given the implicit sphere with centre p and radius rp, and

the light source with centre s and radius rs, we can sample the penumbra

function in point x. The value depends on the distance d with respect to d1
and d2, indicating the borders of the umbra and penumbra, respectively.

7

Let d = jx� �xj, then the value of fds(x) depends solely on d. More precisely,

there are two numbers, d1 and d2, such that

0 � d � d1 ! fsd = 1: full shadow; inside umbra

d2 � d ! fsd = 0: no shadow; outside penumbra

d1 < d < d2 ! fsd =
d2 � d

d2 � d1
: outside umbra, inside penumbra

Here we have chosen linear interpolation as our interpolation heuristic. Of

course, other interpolants could be chosen, but the only physically correct

value would result from a surface integral over the visible portion of the light

source. Here we do not bother to approximate the value of this integral as

the value will be a slowly decreasing function of d. In our experiments, it

appears that even with a linear interpolant no visible Mach banding occurs.

Also notice that d1 could be less than 0, namely if rs > rp and the light

source is su�ciently close to the sphere. But this is physically correct: in

that case the umbra region has a limited extent from behind the sphere.

We now only have to �nd values for d1 and d2. We �rst look at d1. Consider

the most extreme light ray that can be seen behind the sphere. This light

ray is a line, say m, that is tangent both to the implicit sphere and to the

light source sphere. In the 2-D plane, spanned by p, s and x, this means

that we should construct the common tangent to two given circles. Now

this construction is well known (see Appendix A), but it is computationally

involved. If the light source is not too close to the sphere, the tangent points

(=the points where m touches the circles that correspond to the sphere and

the light source, respectively) can be approximated quite accurately by the

points qp and qs, where

qp = p+ rpd̂;

qs = s+ rsd̂;

where d̂ is the unit vector in the direction x � �x. The line m indicates

the border of the umbra, so the distance between a point on m and the

projection of that point onto l is d1. Similarly, the penumbra is bounded

by a line m0 that touches the light source on the opposite side. Again, we

approximate the true position of the tangent point by the point q0 = s�rsd̂.

8

Given the lines m and m0, it can be seen that both d1 and d2 are linear

functions of �. We know the values of d1 and d2 for � = 0 and � = �1:

namely

� = 0 ! d1 = rp and d2 = rs;

� = �1 ! d1 = rp and d2 = �rs:

So d1 = rp + �(rp � rs) and d2 = rp + �(rp + rs). This completes the

computation for the penumbra function in the case of a sphere primitive.

3.2 An implicit line segment

Consider a line segment pq. This can be turned into an implicit line segment

by assigning a radius to both ends, say rp and rq, respectively. If the two radii

are equal, the implicit line segment will be a cylinder with hemispherical

caps; otherwise, it is a cone segment capped by two hemispheres of di�erent

radii. In order to �nd the penumbra function for this implicit line segment,

we proceed along similar lines as in section 3.1. See Fig. 2.

First, we project x onto the plane determined by p, q, and s. We call the

projection �x . In order to achieve this, we write

�x = s+ �(p� s) + �(q � p):

Again, we have orthogonality conditions:

x� �x � p� s) = 0

and

x� �x � q � p) = 0:

It follows that

� =
AE �BD

CE �BF
;

� =
AF � CD

BF � CE
;

9

s

p

q

x

x

x
r

rp

q

Figure 2: Figure 2: the steps in order to get the penumbra function for

an implicit line segment: �rst, project the sample point x onto the plane

through p; q; s. Next, project onto the line segment pq, Using this projection,

�x, �nd the required radius in the point ��x. Then act as with the implicit

sphere.

10

where

A = (x� s � p� s);

B = (p� s � p� s);

C = (q � p � p� s);

D = (x� s � q � p);

E = (p� s � q � p);

F = (q � p � q � p):

Next, we project the point �x onto the line segment pq to �nd ��x. We write

��x = p+ �(q � p);

such that

�x = ��x+ �(�x� s):

Eliminating ��x, we get

�x = p+ �(q � p) + �(�(p� s) + �(q � p));

where now �x, �, andmu are known and � and � are unknown. We introduce

further abbreviations

G = �(p� s) + �(q � p);

H = �x� p;

J = q � p:

Then the equation for � and � becomes

H = �J + �G:

11

We are only interested in the value for �, and this follows by taking cross

products with G:

� =
(H �G):c

(J �G):c
;

where (vector):c is either the x, y or z component of vector. For numerical

stability, we choose that component for which the denominator in absolute

value is the largest.

If both H and J are parallel to G, � cannot be determined in this way. This

is the case if the light source is on the line through p and q. But in this

case, the penumbra is only caused by the implicit sphere, parameterised by

the end point (p or q) closest to the light source.

If we �nd � < 0, we assume that only the point p contributes to the formation

of the penumbra; similarly, if � > 1, the penumbra is assumed to be caused

by q. So in these cases we can immediately resort to the computation as

outlined in 3.1.

Otherwise, once we have �, we can assign a radius to the point ��x, namely

r��x = �rq + (1� �)rp. We now assume that the penumbra function in x can

totally be modelled as the penumbra of a sphere with radius r��x, so next deal

with the rest of the computation in the same way as in subsection 3.1.

3.3 An implicit triangle

In the same way as a line segment pq with radii rp and rq could parameterise

an implicit line segment, a trianle pqr with three associated radii rp, rq, and

rr can parameterise an implicit triangle. Without going into the vector

analytic details, we proceed by computing projections. First, we project

the point x onto the plane of the triangle by computing the intersection �x

with the plane through pqr and the line through s and x. Next we �nd the

barycentric coordinates �, �, and
 of �x:

�x = �p+ �q +
r;

where �, � and
 can e.g. be found by taking cross products repeatedly

with p, q and r.

12

If all barycentric coordinates are positive, then �x lies within the triangle, and

we assume2 that the penumbra function should return 1. If �x falls outside

pqr, we have various cases. If only � is negative, �x is on the other side of qr

and we assume that we only have to take the implicit line qr into account.

Similar, with negative � we look at the implicit line given by pr and with

negative
 it is the implicit line given by pq. Finally, if two of the barycentric

coordinates are negative, we are in the penumbra region dominated by one

of the three vertices: vertex p for negative
 and �; vertex q for negative �

and
, and vertex r for negative � and �.

4 Results

In color plates we show some of our experimental results. We have

5 Discussion and further work

Although our method is inspired by physically correct geometric arguments

to �nd penumbra areas, there are in fact some approximations that we use.

Apart from the issue regarding the precise form of the decreasing fsd in the

penumbra area, there are two other points that require further study.

First, if a scene is composed of multiple primitives where some form of

blending is used, the blend between two primitives will not cast a shadow

(umbra nor penumbra) if the penumbra is too small. This is due to the fact

that the blend is really an artefact from adding �eld values that are both

smaller than the isovalue, but whose sum is larger than the isovalue. This

is understood most easily in the case that rs = 0. In that case, there are no

penumbrae, so we only get umbrae due to all the primitives in isolation. But

the shape of the surface is the result of combinations of primitives, so the

blended regions cannot cast umbrae. Hence, for small but non zero values

for rs, there will be missing umbrae as well.

There is a simple partial remedy to this problem. Consider again the situ-

ation as in Fig. 1. Assume that the implicit sphere not only has a radius

rs, which is the radius for the implicit surface in the absence of any other

2This is not necessarily correct, namely if the light source is large compared to the size

of the triangle, it is possible that there is penumbra in the truncated pyramid with apex

s underneath pqr. We study this situation further in the Discussion section.

13

primitives (so with no blending), but also a radius rss, which is the radius

for which the �eld contribution of this primitive decays to 0. Of course,

rss > rs. Now if we take the radius rs to compute the border of the umbra

(i.e., the value of d1, and rss to compute the border of the penumbra (i.e., the

value of d2), then also the blended portion will cast (pen)umbrae. However,

the penumbra area is then wider than the physically correct penumbra.

Second, if light sources are large with respect to primitives, there can be

penumbrae 'underneath' these primitives. 'Underneath' here means: in re-

gions from which the centre of the light source cannot be seen. Our method

produces penumbrae in the physically correct regions. However, if two of

these primitives are adjacent, in the physical situation these penumbrae be-

come umbrae because of one primitive blocking the light rays that should

illuminate the other's penumbra region. Now since our method deals with

penumbra functions independently, there is no way that we can detect if

another primitive is blocking the light in a penumbrae area. This problem

however only occurs with very large light sources, and for a physically cor-

rect approach in these cases it is doubtful how reliable an essentially local

method can be.

Finally, our method currently supports no CSG combination operators other

than union. We plan to investigate if the basic concept of decomposing

penumbrae by means of penumbrae functions can be extended to accommo-

date for intersections and di�erences as well.

6 Appendix: a construction for the tangent to two

circles

At some places in our derivations, we had to �nd the tangent to two given

circles. If these two circles have the same radii, this problem is trivial.

Consider the case as in Fig. 3, where, without loss of generality, rs < rp.

The desired tangent points iare qs and qp. Observe that sqs is parallel to

pqp. Now reduce the radii of both circles with rs.For the new radii we have

r0p = rp � rs and r0s = 0. Then for the new tangent points, we have q0s = s,

and we only have to �nd the point q0p. Notice that by shrinking the radii of

both circles with the same amount, q0sq
0

p stays parallel to qsqp.The triangle

14

p

s

p

s

q
p

q
s

q’

=q’

p

s

rp

rs

r −rsp

Figure 3: Figure 3: the construction of a tangent to two given circles. Left:

the original situation, right: the situation after the circle with centre s has

been reduced to a point circle. Since spq0p is a rectangular triangle, the

position of q0p can easily be found.

15

spq0p is rectangular, and the angle � in point s is

� = arcsin
jp� q0pj

js� pj
:

So we can compute the coordinates of q0p with respect to a coordinate system

which has its origin in p and the y-axis aligned with s� p. The slope of the

line pq0p is �, so the y-coordinate of q
0

p is (rp�rs) sin(�) and the x-coordinate

is (rp� rs) cos(�). The only step that is left than is to multiply the position

of q0p with respect to p with a factor of
rp

rp�rs
. The situation where we need

the tangent that touches one of the two circles at the inside is analogous.

16

