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Abstract

We propose a fast method of generating an approximate polygonal mesh from an implicit surface. Current workstations
are still not capable of producing polygon meshes fast enough for the interactive modelling of complex implicit models. We
propose a hybrid method that combines current implicit polygonization techniques with the faster sub-division surface technique
applied as a post-process to smooth the implicit mesh. In an interactive enviroment the smooth mesh points can be migrated to
the implicit surface, in idle moments when the user is not interacting with the model. The technique can be further enhanced
by providing tools for the user to indicate areas of interest that can be preferentially smoothed.

Keywords Interactive modelling, implicit surfaces, polygonization, sub-division surfaces.

1 Introduction

Since the early 1980’s implicit modeling has gained in importance as a useful modelling technique. The cartoon like models
of Blinn [Blinn 82], Wyvill [Wyvill 86] and Nishimura [Nishimura 85] have been replaced with the more sophisticated models
which combine CSG and implicit blending techniques, see [Pasko 95] and [Wyvill 99]. The big advantage of implicit techniques
over parametric, is that very complex shapes can be described extremely quickly using a skeletal model, [Bloomentha 97]. One
of the big drawbacks to implicit modelling is the time taken to visualize such complex models. Although it is possible to
convert these models to polygons using a variety of techniques [Ning 93] and [Wyvill 96], these methods are not fast enough
for the visualization of complex models. Particle methods, such as [Witkin 94] produce an impression of the surface in a shorter
time than a full polygonizer, but still require a further step to produce a mesh, so that for complex models the method is still
relatively slow for an interactive modelling system.

Apart from speed there are other important quality issues, voxel based methods can produce ambiguous tilings ([Ning 93])
and too many or poorly shaped triangles. Adaptive methods are either too slow ([Bloomentha 88]) or are not able to tile certain
topological cases [Overveld 93].

Sub-division surfaces [Doo 78]) can also be visualized as a smooth polygonal mesh. Whereas an implicit surface tiler
has to make many function evaluations to find a point on the implicit surface, the sub-division surface technique contains no
such search mechanism. Instead each iteration produces a new mesh which becomes smoother at each iteration. Sub-divisio
surface techniques can be used to approxir6dtgHoppe 94] or everC? curved surfaces [Biermann 00], but this behaviour
emerges from the sub-division rules, the procedure is faster than implicit surface polygonization as it avoids the implicit search
mechanism.

In this paper we first of all give overviews of our implicit polygonization and sub-division surface techniques. This is
followed by the details of our method along with some preliminary results and a discussion on the future directions of the
project.
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2 Polygonization

In this section we examine our implicit surface polygonization technique and review the reasons why it does not operate at
interactive rates. We have tried several polygonization algorithms, the first [Wyvill 86] has a number of advantages and we
chose this algorithm as the starting point for the current method. The scheme divides the world into a mesh of cubic voxels, and
tests selected voxel vertices by finding the implicit value of the vefteix question and testing against the implicit funciton,

f(P) = 0. Various voxels are selected as seed voxels and if any edge is found that has a vertex inside and a vertex outside
the surface, it is assumed that a piece of the surface intersects that edge. The algorithm continues by visiting the surrounding
voxels and checking for intersections. Voxels are marked when they are visited and the algorithm terminates when there are no
more unvisited voxels waiting to be checked.

This algorithm has the advantage that it assumes nothing about the topology of the scene, it produces a consistent mesh
without the mesh ambiguity problems of [Lorensen 87]. The user can control the size of the voxels, it is easy to implement
and reasonably fast. What slows the algorithm down is that a large number of implicit function evaluations have to be done.
Once a voxel edge is found to intersect the surface, then some kind of root finding algorithm must be applied to iterate to the
intersection point. This involves several implicit function evaluations. Also, the normals must be calculated at polygon verttices
for rendering purposes and with black box implicit functions, for which the gradient cannot be found analytically, a numeric
technique must be adopted, again involving further implicit function evaluations, (see [Bloomentha 88]). The dominating cost
of the uniform space subdivision algorithm is the number of implicit function evaluations that must be done to produce a mesh.

3 Sub-division Surface Scheme

A lot of interest has recently been shown in subdivision surface schemes. The idea is to take an initial polygon mesh and smooth
the mesh by repeatedly cutting corners. The rules according to Catmull/Clark [Catmull 78] and Sabin/Doo, [Doo 78] produce
surfaces that can be proven to converge to a piecewise B-spline where the original vertices are the control points. We use the
Sabin/Doo scheme in our algorithm, it is considerably faster than implicit surface polygonization, requires no implicit function
evaluations, but the resulting surface is not necessarily clogépo= 0.

4 The Hybrid Scheme

We identify two types of actions that take place in the formation of a polygonal approximation of an implicit surface:
e mesh subdivision
e vertex adjustment

From an initial mesh derived from the implicit polygonizer, the recursive subdivision provides a smoothed mesh at interactive
rates. The vertices will not necessarily be on the implicit surface so the basic idea is to adjust the vertices during idle moments
when the user is not interacting with the model.

4.1 Toplogical Issues

At places of high curvature, small triangles are needed in order to give sufficient visual accuracy. However, mesh subdivision
does not alter the topological genus of the surface, so before mesh subdivision can start, we have to make sure that an initial
mesh exists that is topologically correct ( i.e. topologically equivalent with the final mesh).

As noted in section 2, the uniform space sub-division scheme, samples space at the vertices of a uniform, cubic voxel grid.
This technique does not assume any information about the topology or curvature of the surface. Thus features that are so small
they fit within a voxel will be missed. If the size of the voxel grid is too big, topological features can also be mistaken. For
example the two spheres (circles) in Figure 1 will appear connected, since all samples taken are within the two spheres. At a
higher sampling density the spheres will appear disconnected.

In the method presented here we assume that the user will choose the sampling density interactively, altering the sampling
grid to suit the topology the user wishes to model. The user can then describe a skeletal implicit surface model (as described in
[Bloomentha 97]) and choose to show the implicit surface as a smooth polgygonal mesh. The user can control the quality of the
mesh in a number of ways. Firstly an appropriate sampling density must be chosen. As indicated above the sampling density
of the initial grid will determine the topology of the displayed model.

The lower the density of the initial mesh the faster the system will respond, but the more likely it is that desired features
may be missed, so the user will choose an appropriate option.
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Figure 1: Slice through a sampling grid, with two implicit spheres.

4.2 Subdivision Issues

There are four situations when vertices recieve location-data(iye z coordinates):
1. During the formation of the initial mesh
2. Newly created vertices that result from mesh subdivision have to have a first location

3. Vertices that have received a first location in 2 above, may have to be moved either because the resulting mesh is not
smooth, and/or because they are not in the solutiof{@fy.z) = 0

4. As a result of user interaction, the functifte, y, z) is modified, and the mesh should adjust accordingly. In this case
we assume that the modifications do not imply topological changes.

For the above types of actions, we see a number of different algorithms:

4.2.1 Algorithm A - Simple Subdivision

Mesh subdivision according to some suitable subdivision scheme. The newly introduced vertices get an arbitrary (provisional)
location, for instance in the centroid of the triangle that was subdivided.

4.2.2 Algorithm B - Doo-Sabin

Mesh subdivision according to the corner cutting scheme of Catmull/Clark and Sabin/Doo. Here the provisional location of the
newly created vertices is such that the resulting surface can be proven to converge to a piecewise B-spline where the original
vertices are the control points.

4.2.3 Algorithm C - Root Finding

Vertex motion as a result of an iterative solutionfdfr,y,z) = 0. Letp be an abbreviation fofz, y, z), then we can use a
Newton Raphson approach assuming an initial guesp &xists, say’, such thatf(p') = a anda is not too large; then we

write p = p’ + d1, and an approximation fay follows from settingd; = lambda x gradf (p'); 1st order Taylor expansion and
solving for lambda givetambda = —a/|V f(p').V f(p')|, s061 = —aV f (D) /|Vf (). V f ()]
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4.2.4 Algorithm D - Relaxation

Vertex motion as a result of local relaxation. lzghave neighbour vertices,i = 1,2, ..., n. Then we declare the environment

of p smooth ifp is in the centroid of the;. In order to increase the smoothness we compute a correction vedhat is to be

applied to p (and for each of thg, there are also correction vectors that are computed according to the same scheme). We set
pe =31 opiandd = pc—p;next, by = (nxd—." ,8;)/(n+1); here, the 6; = pc; — p;, and pe; is the centroid of the
neighbours op;. It can be seen that the assignmgnt — — p + - increases the smoothness roynavhereas it leaves the
centroid of the clusteny p1, p2, ps, ---pn) in tact. The computedh, vectors are only applied after they have all been computed.

For a subset of pointg, we may decide not to apply the adjustment: these points are left unaffected.

4.2.5 Observations on the algorithms

We observe the following:

¢ only algorithm C drops pointp onto the implicit surface. However, C does not control the motions of paintise
implicit surface. A possible effect of C therefore could be that the mesh gets unevenly sampled (very skinny triangles
may result, or even triangles may be turned 'inside out’). Also this is the only algorithm that requires the implicit function
and its gradient and is therefore slow.

e algorithm D assures the surface not only to be smooth, but also to be evenly sampled. If all mesh points are allowed
to move freely, algorithm D strives for configurations where every vertex point is in the middle of a regular n-gon.
However, algorithm D has no knowledge about the funcfi@n y, z), and there is no guarantee that regions that result
from repeated application of algorithm D are on the implicit surface.

e in areas where the iso surfagézr,y,z) = 0 is smooth (for instance, far froi"! discontinuities as may arise from
non-differential operators iff such as MAX or MIN}), the result of applying algorithm C and the result from applying
algorithm D will be to a large extent indistinguishable. Nevertheless, application of one iteration from D is expected to
be much cheaper than applying one Newton Raphson iteration of C (even if we suffice with using non-updated estimates
for V f(p') for some iterations). Therefore, algorithm D can be seen as a cheap predictor, whereas C is a corrector. But
in many places (namely, far frofi' discontinuities), the predictor is assumed to be sufficiently accurate to completely
leave out the corrector.

¢ also algorithm D, being an iterative algorithm, needs an initial estimate for the vestiédgorithm B is suitable to play
this role.

4.3 The Hybrid Algorithm

The following algorithm makes the use of all of the techniques, algorithms A-D described above. For the moment we describe
the hybrid algorithm without making use of user interaction.

The first step is to construct an initial mesh, the mesh should be sufficiently dense so that it captures all topological
peculiarities and shape features (such as small protrusions) that otherwise might be missed as a result of of the algorithm
below, but it does not necessarily have to capture’altiscontinuities. This could be done as an option chosen by the user.
The mesh vertices that result are all on the implicit surface. So, in every triangle, the three corneryesatiesy f (p;) = 0.
label all vertices with (ON’UNKNOWN?’). The attribute 'ON’ (as opposed to '"MAYBE’) means that this vertex satisfies
f(p) = 0. The attribute 'UNKNOWN'’ (as opposed to 'SMOOTH’) means that we are not sure if this vertex is in a smooth area.
For instance, it could be that there i€'4 discontinuity nearby. In these areas, we will have to apply algorithm C for every new
vertex that is created. However, vertices that result from splitting a triangle that has all three vertices 'SMOOTH’ are assumed
to be sufficiently approximated by algorithm D.

READY =false;
WHILE (not READY) {
READY=true;
FOR (all triangles T) {
IF(T is sufficiently small or the angles with its
neighbour triangles are sufficiently close to 180 degrees)
label T as 'OK’;

1We use MAX and MIN in theBlobTredor defining CSG operations homogeneously with belnding see [Wyvill 99]
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ELSE label T as 'NOT_OK’;
}
FOR (all triangles T that are NOT_OK) {
READY=false;
IF(all three T's edge-sharing neighbours are also NOT_OK)
subdivide T with algorithm B;
ELSE subdivide T with a subdivision scheme according to
algorithm A that does
not affect those of T's edge-sharing neighbours
that are OK;
IF(T's vertices are all labeled ("ON’,’'SMOOTH))
label new vertices ('MAYBE’,SMOOTH);
ELSE label new vertices (MAYBE’,"UNKNOWN?);

}

The first part of the algorithm above has created new vertices, that are not on the surface, amidst a collection ’old’ vertices
that are on the surface. Those new vertices that resulted from algorithm B are probably not too far from the surface, unless the
surface has a local! discontinuity or another non-smooth feature. Next we have to get all the new vertices on the surface.
For the (MAYBE’,SMOQOTH?’) ones, this can be done with algorithm d. For the (MAYBE';UNKNOWN’) ones we can also
apply algorithm D first, but then we have to apply algorithm C in order to check (and possibly correct) if they S@atjsfy 0.
Apply a limited number of iterations of algorithm D to all vertices; only apply the displacement wictorthose vertices
labeled (MAYBE’,...);

The second part of the algortithm proceeds as follows:

FOR(all vertices p labeled (MAYBE’,SUNKNOWN"))X{
evaluate f(p);
IF(f(p) is close to 0) {
label p as (MAYBE',SMOOTH;

/* We know that p is near the implicit surface (but probably not
on it, and it does no harm to allow it to take part in
future runs of algorithm D). It got close to the implicit surface
without us forcing it by means of algorithm C, so apparently,
the environment is smooth so that algorithm D gives
the correct result. */

relabel p’s neighbours that are labeled (ON’yUNKNOWN’) as ('ON’,’SMOOTH);

/* we do this relabelling for efficiency reasons. Indeed, due to lack of
knowledge about the implicit surface, the vertices from the initial mesh wer €
all conservatively labeled (ON’;UNKNOWN?’), but many of them deserve a labe
(CON’,’SMOOTH?’). Maintaing the conservative 'UNKNOWN'’ assignment will cause
many unnecessary function-evaluations in the future, so as soon as we know
that p is in a SMOOTH area, we assume that the triangle from which p origina t
as a result of subdivision, is also entirely 'SMOOTH’. A similar argument
applies to other vertices than the ones from the initial mesh that received
'UNKNOWN’: some of these also will be converted later on to SMOOTH. */
}
ELSE { apply algorithm c;
/* enforce p down to the surface */
label p as ('ON',;’UNKNOWN");
/* p is on the surface, but we may have to do function evaluations in its
neighbourhood for new vertices to be created later */
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At the end of this algorithm all triangles are sufficiently small and the mesh looks smooth, but not all vertices are really on
the surface. Only the vertices labeled ('ON’,'...") are guaranteed on the surface. For all other vertices, we may want to spend
additional computational effort for instance during idle time in an interactive application, to execute algorithm C.

4.4 User Interaction

The above algorithm assumes no user interaction, but three forms of user interaction can be easily interwoven. These interactive
versions require visiting all the vertices in the same order as they were introduced, so the data structure that represents the mesl|
should also record a rank number for all vertices.

4.4.1 Modifications To the Implicit Function

The user might initiate small modifications of the implicit function. All vertices should be labeled (MAYBE’';UNKNOWN"),

and next in the oldest vertices (=the vertices that made up the initial mesh), alorithm C should be executed. These oldest vertices
receive (ON’;UNKNOWN?"). Next, the entire algorithm as outlined above is executed, except that most of the subdivisions are
not actually performed, because the resulting vertices already occur in the data structure. Nevertheless, it might be that there are
some triangles NOTOK that were OK in the first run; these triangles need subdivision. As a result of multiple modifications, it
might be that the mesh becomes too dense: many unnecessary triangles will result. Standard mesh decimation algorithms (set
[Hoppe 93], [Lindstrom 98]) may be used to periodically 'clean’ the mesh.

4.4.2 Additional Smoothing

The user might indicate some regions where additional smoothing should take place: possibly to improve the distribution of
vertices over the mesh. In these regions, temporarily the 'ON’ label should be replaced by 'MAYBE'. Indeed, as we said
earlier, algorithm C causes vertices to land on the surfaces, but it does not guarantee an even distribution of the vertices over
the surface. After some iterations of algorithm D, the vertices that originally were 'ON’ should have algorithm C executed and
reset their label to 'ON'. Finally, some iterations of algorithm D to the '"MAYBE’ vertices smooths minor visual artifacts in the
neighbourhood of 'ON’ vertices that are surrounded by vertices that are not on the surface.

4.4.3 Early Smoothing

The user might indicate regions were the label 'SMOOTH’ was set too early. For instance, a small protrusion in the middle of
an otherwise smooth area may get overlooked in the course of the subdivision algorithm. In these areas, the 'SMOOTH'’ value
should be replaced by 'UNKNOWN’, and algorithm C should be invoked deliberately. Again, some iterations of algorithm D
may be useful to redistribute the vertices over the surface to improve the uniformity of the mesh.

5 Results and Implementation

Our implementation does not currently include all of the algorithm detailed in 4.3. So far we have implemented algorithms

A and C. Thus we produce triangles that are not even in size and the vertices will not in the first instant lie on the surface.
Idle moments are used by algorithm C to move the points to the surface, not an ideal situation as artifacts as mentioned above
could result, ie very skinny triangles, or even triangles that may be turned 'inside out’. Our implementation does give us some
preliminary results that indicate that the full algorithm is worth pursuing.

The initial grid resolution for the implicit polygonizer provides the polygon mesh which is then smoothed at various levels
of subdivision by the Doo-Sabin algorithm. The number, labelled as grid resolution (4,8,16,32) indicates the number of voxels
on a side of the grid. Table 1 and table 2 shows various statistics and the images are shown in the corresponding figures, Figure 2
and Figure 3.

It can be seen from the tables that for all the examples the time for subdivision plus the time taken to find the initial
polygonization is considerably smaller than the time to generate an equivalent number of polygons by polygonization alone.
For each pointP, an error value is found by calculatitg(P) — £(0))/||V(p)|| The error is then averaged over the surface. It
can be seen that error in the subdivision surface decreases as the number of initial voxels increases (as expected).
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Initial Grid Size

Figure 2: Spheres at various initial grid sizes and levels of subdivision.

Initial Grid Size 4 8 16 32

Subdivisions

Figure 3: Blended Spheres at various initial grid sizes and levels of subdivision.
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Initial Grid Resolution 4 8 16 32
Time to Polygonise 0.43 0.47 0.65 1.50
Number of Faces 8 104 536 2024
Average func value error 0.014 0.008 0.003 0.001
Number of Subdivisions 1 2 3 4 1 2 3 1 2 1
Time to subdivide || 0.01 | 0.06 0.08 0.38 0.19 0.45 1.99 0.41 2.31 1.57
Number of Faces| 26 98 385 1538 434 1931 8128 2325 10272 | 8688
Average func value error || 0.130| 0.175| 0.186 | 0.189 | 0.010 | 0.012 | 0.013 | 0.004 0.005 | 0.001
|| Total time || O.44| 0.49| 0.51 | 0.81 | 0.66 | 0.92 | 2.46 | 1.06 | 2.96 | 3.07 ||

[ Time per face (Uf) || 0.017] 0.005] 0.0001] 0.00052] 0.0015] 0.00047] 0.0003] 0.00046[ 0.00029] 0.0003]

Table 1: Sphere Polygonisation and Subdivision Times.

Initial Grid Resolution 4 8 16 32
Time to Polygonise 0.43 0.47 0.65 1.50
Number of Faces 24 168 680 2904
Average func value error 0.18 0.068 0.033 0.013
Number of Subdivisions 1 2 3 4 1 2 3 1 2 1
Time to subdivide || 0.01 | 0.10 0.38 1.67 0.15 0.86 3.42 1.49 4.26 1.66
Number of Faces|| 117 511 2138 8758 891 4092 | 17535| 3613 | 16531 | 15332
Average func value error || 0.735| 0.906| 0.938 | 0.945 | 0.165| 0.183 | 0.186 | 0.065 | 0.071 | 0.014
|| Total time || O.44| 0.54| 0.81 | 2.10 | 0.62 | 1.34 | 3.89 | 2.14 | 491 | 3.16 ||

[ Time per face (Uf) || 0.004] 0.001] 0.0004] 0.00024] 0.0007 | 0.00033] 0.0002] 0.0006] 0.0003] 0.0002]

Table 2: Blended Sphere Polygonisation and Subdivision Times.

6 Future Work

The next step is to implement the full hybrid algorithm, however there are a number of ways in which user interaction could
be used where it is necessary to give the visualization software some help. An automatic way of calculating a reasonable
initial grid size would make user interaction somewhat simpler. This could be done using the techniques described in [Nuij 96],
however even if the topology could be determined by calculating the critical points, a grid size that is too small will take too
long to process and not keep up with the user interaction. There are many possible variations to this technique. It may be
possible to smooth the parts of the inital mesh that are the least smooth. For example voxels with widely differeing implicit
values at the vertices could be sub-divided then offered to the corner cutting algorithm. It is important to choose the right’
places for the initial evaluations. In particular, these should be near ‘critical’ points, for example, sharp corners etc. A future
polygonizer might enhance the standard implicit surface formula with optional user’s hints. This technique has been used for
font descriptions, a merge of Bezier-spline control points and hints; these hints are used during scanconverting the fonts to low
resolutions, where every pixel should be rounded the right way. In the case of implicit surfaces, optional 'hints’ could be, for
example(z, y, z) points where the evaluator should generate initial polygons.

It might be problematic to guarantee proper time consistent behavior when an implict object moves during animation.
Maybe this could be improved somewhat using the same hinting mechanism, if the hint-regions moves in accordance with the
object.

7 Conclusion

We have proposed a hybrid algorithm which combines implicit surface polygonization with subdivision surface techniques as
well as a smoothing algorithm using a relaxation technique and an algorithm for moving vertices onto the implicit surface.

So far we have tested parts of this algorithm on some simple implicit models and found that using a low grid size for an
initial polygonization and smoothing the result with the Doo-Sabin algorithm, can save considerable processing time. The
main conclusion is that it is worth investigating this approach further to achieve a more efficient polygonization algorithm for

complex objects.
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