
The BlobTree
Warping, Blending and Boolean Operations in an Implicit Surface Modeling System

Brian Wyvill & Andrew Guy
University of Calgary

Department of Computer Science
2500, University Dr. NW Calgary, Canada

blob@cpsc.ucalgary.ca

Eric Galin
Laboratoire L.I.G.I.M

Ecole Centrale de Lyon
Lyon, France

galin@cc.ec-lyon.fr

Abstract

Automatic blending has characterized the major advan-
tage of implicit surface modeling systems. Recently, the
introduction of deformations based on space warping and
boolean operations between primitives has increased the
usefulness of such systems. We propose a further enhance-
ment which will greatly enhance the range of models that can
be easily and intuitively defined with a skeletal implicit sur-
face system. We decribe a hierarchical method which allows
arbitrary compositions of models that make use of blending,
warping and boolean operations. We call this structure the
BlobTree. Blending and space warping are treated in the
same way as union, difference and intersection, i.e. as nodes
in the BlobTree. The traversal of the BlobTree is described
along with two rendering algorithms; a polygonizer and a
ray tracer. We present some examples of interesting models
which can be made easily using our approach that would be
very difficult to represent with conventional systems.

Key words : blending, implicit surfaces, polygonizing,
raytracing, warping.

1. Introduction

The major advantage of implicit surface modeling sys-
tems has been the use of automatic blending between skele-
tal elements. Recent developments in such systems include
the addition of boolean operations reminiscent of CSG sys-
tems [15] and space warping which provides a method of
implementing deformations [7], [20].

Existing skeletal implicit surface systems do not include
all these important characteristics in a single unified struc-
ture which would allow aribitrary blends between models
that include boolean operations as well as warping at a local
and global level.

The problem addressed by this work is how to organize
blending, warping and boolean operations in a manner that
will enable global and local operations to be exploited in a
general and intuitive fashion.

CSG systems typically use a tree structure to describe the
relationship of boolean set operations such as union, inter-
section and difference between half space primitives. Im-
plicit surface systems have not evolved such an elegant way
of representing the relationship between blending, warping
and boolean operations on skeletal element primitives.

If implicit surface primitives were treated in a homoge-
neous manner, then blending would occur globally, i.e. be-
tween all primitives, whether this was desired or not. In this
work we structure our implicit surface models using a tree
which includes blending, warping and boolean operations.
We refer to the structure as the BlobTree.

In this paper we present the following contributions:

� Complex models can be built with a small number of
primitives using arbitrary combinations of blending,
warping and boolean operations (section 3).

� Prototyping by polygonization (section 4).

� Efficient direct ray tracing for high quality visualiza-
tions (section 5).

� Joins between primitives can vary continuously be-
tween blend and union (section 3.3).

� Warping either globally or locally controlled. Warps
can be arbitrary functions, examples given include the
Barr deformations and affine transformations imple-
mented as space warps (section 3.4).

We also give examples of some complex shapes built
from a few primitives using the operations (blend, warp,
intersection, union, difference) organized in the BlobTree.
These models would be very difficult to build using conven-
tional modeling techniques.

1.1. Previous Work

Jim Blinn introduced the idea of modeling with skele-
tal implicit surfaces as a side effect of a visualization of
electron density fields [2]. Such models have various de-
sirable properties including the ability to blend with their
close neighbors. These models have been given a variety
of names in particular: Blobby Molecules (Blinn), Soft Ob-
jects (Wyvill) [21] and MetaBalls (Nishimura) [14]. Jules
Bloomenthal pointed out that these models could be grouped
under the more general heading of implicit surfaces, defined
as the point set: F (P) = 0 [3].

A system which includes blending, warping and boolean
operations was introduced by Pasko & al. [15], who based
the operations on functionally defined primitives. This func-
tional approach, called the theory of R–Functions, also en-
compasses an analytical description of blending and boolean
operations. Our system is similar except that we use skele-
ton based primitives [4] instead of functional primitives,
structured using the BlobTree. As yet we have not done a
comparison of these two approaches, however working with
skeletons has enabled us to build an interactive modeler
providing intuitive control to the operator.

Our warping uses the deformations introduced by
Barr [6], i.e. the operations of twist, taper and bend.

Our polygonizer is a modification on the software de-
scribed in [21]. We used a uniform space subdivison algo-
rithm rather than an adaptive algorithm since it was readily
available. Adative polygonizers have been described for
both CSG systems [19] and implicit surface systems [18].

2. Implicit Surface Models

Skeletal implicit surface models are constructed from
combinations of geometric skeletal elements. An implicit
model A is generated by summing the influences of NA

skeletal elements, whose potential field will be denotedFAi ,
which together define a scalar fieldFA. The global potential
field FA(x; y; z) of an object, we call the implicit function,
may be defined as:

FA(x; y; z) =

i=NAX
i=1

FAi(x; y; z)

The surface of the object may be derived from the implicit
function FA(x; y; z) as the points of space whose value
equals a threshold denoted by TA.

ΣA = fM(x; y; z) 2 IR3; FA(x; y; z) = TAg

Each component of the implicit functionFA(x; y; z)may
be split into a distance function dAi(x; y; z) and a field func-
tion fAi(r), where r stands for the distance to the skele-
ton [1]. We will refer to the following notation:

FAi(x; y; z) = fAi � dAi(x; y; z)

Note that traditionally in implicit surface systems, skele-
tal elements do not have any structure, which means that all
elements blend in the same way. In this work we introduce a
new approach using a tree structure to store the relationships
between the skeletal elements.

Visualizing the surfaces can be done either by direct ray
tracing using an algorithm similar to that described in [13]
(a more recent technique is described in [12]) or by first
converting to polygons [21].

3. The Blob Tree

In our system models are defined by expressions which
combine implicit primitives and the operators [(union),
\ (intersection),� (difference), + (blend), � (super–elliptic
blend), and w (warp). The BlobTree is not only the data
structure, built from these expressions but also a way of
visualizing the structure of the models. The operators listed
above are binary with the exception of warp which is a unary
operator. In fact it is more efficient to use n–ary rather than
binary operators.

3.1. Nodes of the BlobTree

Throughout this paper, T will refer to the BlobTree. N
will be a node in the tree, and its left and right leaves will be
referred to as L(N) andR(N) respectively. Thus, the field
created by a node in the tree will be denoted as F (N). In
the following sections we describe the nodes of the tree.

3.2. Boolean operators

We recall that the union and intersection of primitives
may be respectively defined as:

(
FA[B = max (FA; FB)

FA\B = min (FA; FB)

The difference operator may be expressed in terms of a
negation and an intersection: FA�B = FA\(�B).

However, those functions show discontinuities, and sev-
eral other Cn functions have been proposed [15].

8>><
>>:

FA[B =

�
FA + FB +

q
FA

2 + FB
2
��

FA
2 + FB

2�n2
FA\B =

�
FA + FB �

q
FA

2 + FB
2
��

FA
2 + FB

2�n2

2

Figure 1. Super–elliptic blending

3.3. Blending operators

Although blending two primitives is generally performed
by adding their potential fields, super–elliptic blending has
been proposed [16] so as to achieve a large range of blends.
Throughout the remainder of this paper standard blending
will be referred to as A + B (i.e. sum the functions FA
and FB). So called generalized blending will be denoted as
A �B and may be defined as:

FA�B =
�
FA

n + FB
n
� 1
n

It is interesting to point out the following properties:8><
>:

lim
n!+1

�
FA

n + FB
n
� 1
n = max (FA; FB)

lim
n!�1

�
FA

n + FB
n
� 1
n = min (FA; FB)

Moreover, this generalized blending is associative, i.e.
F(A�B)�C = FA�(B�C). The standard blending operator +
proves to be a special case of the super–elliptic blend with
n = 1. When n varies from 1 to infinity, it creates a set
of blends interpolating between blending A+B and union
A [B (figure 1). Figure 3 shows the nodes to be binary or
unary, in fact the binary nodes can easily be extended using
the above formulation to n–ary nodes.

Following Pasko’s functional representation [15], another
generalized blending function may be defined as:

FA�B =

�
FA + FB + �

q
FA

2 + FB
2
��

FA
2 + FB

2�n2
When � 2 [�1; 1] varies from �1 to 1, it creates a

set of blends interpolating the union and the intersection
operators. However, this operator is no longer associative
which is incompatible with the definition of n–ary operators.

3.4. Warp operators

A useful tool in our system is the ability to distort the
shape of a surface by warping the space in its neighborhood.
A warp is a continuous function w(x; y; z) that maps IR3

into IR3. Sederberg provides a good analogy for warping
when describing free form deformations [17]. He suggests
that the warped space can be likened to a clear, flexible
plastic parallelpiped in which the objects to be warped are
embedded. A warped element may be defined as:

FAi(x; y; z) = fAi � dAi � wAi(x; y; z)

Throughout this paper, a warp function will be de-
noted as w(x; y; z). A warped element may be fully char-
acterized by the distance to its skeleton dAi(x; y; z), its
potential function fAi(r) and eventually its warp func-
tion wAi(x; y; z). Such elements will be denoted as:
ffAi(r); dAi (x; y; z); wAi(x; y; z)g.

In some cases we may want to compute the gradient of
the potential field, e.g. for normal computation. We recall
that the gradient of a C1 bijective function F (x; y; z) is:

rF (P) = f 0 � d � w(P)� J�1
w (P)�rd � w(P)

Thus, for each component Ai, we need to be able to
compute both wAi(P) and the Jacobian JwAi (P) for each
warp function w(x; y; z).

3.4.1. Affine Transformations

The affine transformations can be applied as warp func-
tions. Although the effect of this is no different from ap-
plying the same transformations to the skeletons in normal
space, the advantage is that a skeletal element can be defined
in its canonical position and orientation and a warp used to
transform it into the world space, as is common practice
in many ray tracers. The advantage in our system is that
warping and transformations may be treated in a consistent
fashion.

Affine transformations can also be composed with other
warps. For efficiency, consecutive affine transformations
can be concatenated.

3.4.2. Barr Deformations

The Barr deformation operators, twist, taper and bend
have been implemented as warps. As indicated in [6] the
deformations can be nested producing models such as shown
in figure 5. In the figure three blended cylinders have been
twisted and tapered, each sample point P (x; y; z) is first
transformed into warp space using wTaper � wTwist(P).

Barr applies the warp function to wireframe models, and
thus uses the warp function wAi to change the coordinates

3

Figure 2. Implicit surface model including boolean
operations and warping

of the vertices. In our case, we wish to warp space, thus we
use the inverse warp function (wAi)

�1.
The inverse twisting operation is a twist with a negative

angle, and the inverse tapering operation is a taper with the
inverse shrinking coefficient. The inverse of bend cannot
be produced by modifying the bend parameters (see [6] for
details of the inverse of the bend operation).

3.4.3. Generic Warps

In practice, any kind of warp may be used, but the Ja-
cobian may be difficult or impossible to compute if the
warping is not bijective. In that case, we rely on a discrete
approximation of the gradient (see section 3.8).

3.5. The leaf nodes

The leaf nodes of the BlobTree contain skeletal implicit
primitives. The following have been are defined:

� Points: ellipsoids and super-ellipsoids.

� Lines: cylinders capped with hemispherical ends.

� Circles: torii.

� Polygons: offset surfaces.

� Polyhedra: offset volumes.

� Plane: offset plane.

3.6. Example of a BlobTree

An example of a model built from these nodes is shown in
figure 3. Starting at the left most leaf node, the two spheres
are blended (+ node). A horizontal plane is intersected with

Twist

Blend

Blend Twist

Intersect

TaperBlend Plane

Figure 3. The blobtree for figure 2

the model leaving only the lower half of it (\ node). This
model is then blended with a tapered cylinder. A second
cylinder has a twist applied to it and it is then blended to the
result. Finally a global twist is applied to the entire tree to
produce figure 2. As can be seen from this example nodes
can be added to the BlobTree in any order.

3.7. Traversing the Blob Tree

Polygonization and raytracing algorithms need to evalu-
ate the implicit field function at a large number of points in
space. The functionF (N ;M) returns the field value for the
node N at the point M , which depends of the type of the
node:

function F (N ;M):

1. Primitive : F (M).

2. Warp : F (L(N); w(M)).

3. Blend : F (L(N);M) + F (R(N);M))

4. Union : max(F (L(N);M); F (R(N);M))

5. Intersection : min(F (L(N);M); F (R(N);M))

6. Difference : min(F (L(N);M);�F (R(N);M))

4

3.8. Computing the Normal and Surface Properties

Exact normals may be computed given the normal of
each primitive. The normal for a blend node is the weighted
average (i.e. weighted by the value of the implicit function)
of the normals computed from each of the child nodes. For
a CSG node, normals are computed from the appropriate
child. If the node is a warp, a method for computing the
normal must be provided with the warp function. This
will either use the Jacobian and the normal from the child
node or a numerical approximation. In the case of the Barr
warps, details of the Jacobians are given in [6]. A numerical
approximation to the gradient is:

rF (x; y; z) =
1
2�

0
@ F (x+ �; y; z)� F (x� �; y; z)

F (x; y + �; z)� F (x; y � �; z)
F (x; y; z + �)� F (x; y; z � �)

1
A

Both techniques have pros and cons. Discrete evaluation
requires the computation of the potential field at six locations
around the given points, whereas the exact computation in-
volves the computation of the Jacobians of the warps which
may be expensive (e.g. the Jacobian of the twist function
requires a sine and cosine evaluation).

For attributes such as color, reflection, refraction coef-
ficients etc. the resultant is computed as follows: for a
blend node the resulting attribute values are calculated as
the weighted average of the attributes of the children. For a
CSG node the attributes are taken from the attribute of the
appropriate child (e.g. for union takemax(L(N), R(N))).

Currently the warp nodes do not alter the attribute values
although this possibly opens up an avenue for some special
effects with warped texture spaces in the future.

4. Polygonization using the BlobTree

Polygonization is used for prototyping models; after the
polygon mesh has been produced it can be viewed on any
graphics workstation. Adding boolean operations to im-
plicit surface models introduces discontinuities or junctions
between surface elements that are important to the resulting
model. To reproduce these discontinuities in the polygon
mesh a post–processing step is performed.

A uniform space subdivision algorithm [21] is applied to
the BlobTree to produces a polygon mesh. For trees that
contain CSG operations, a post–processing step is applied
to the resulting mesh [20]. Other polygonization algorithms
could also be used and the same CSG post–processing step
performed.

The CSG post–processing algorithm finds edges in the
polygon mesh that span discontinuities produced by the
CSG operations. These edges occur when the field value
is contributed by different nodes in the tree. Once these
edges have been found they are subdivided and the newly

x

x @
@

n2

p
2

p
12

p
1

n1

C2

C1
12n

c2

c1

n2

n1

p12

Figure 4. Approximating the intersection of two im-
plicit contours. Left: p12 is a first guess. Right:
iterating to get a more accurate approximation of x.

created vertex is moved on to the surface at the junction us-
ing an iterative algorithm proposed in [20] (figure 4). This
CSG post–processing algorithm needs the field value and
normal from each of the contributing nodes at a number of
points in space. This requires a path to the node that is the
contributor for a given point in space. Finding this path also
involves a tree traversal algorithm as follows:

The function G(N ;M) returns a tuple of the path to the
contributing node and the field value for the point M when
applied to the nodeN .

function G(N ;M):

1. If N is a Primitive return (N ; F (M))

2. If N is a Warp, call the function on the child
node, (PL; FL) = G(L(N); w(M)) and then re-
turn (prepend(N ; PL); FL), where prepend joins the
node N on to the path PL

3. Otherwise the function is called on the child
nodes, (PL; FL) = G(L(N);M) & (PR; FR) =
G(R(N);M) and the return value depends on the
type of the node.

4. If N is Blend:

� if FL = 0 return (prepend(N ; PR); FR)

� if FR = 0 return (prepend(N ; PL); FL)

� else return (N ; FL + FR)

5. If N is Union:

� if FL > FR return (prepend(N ; PL); FL)

� else return (prepend(N ; PR); FR)

6. If N is Intersection:

� if FL < FR return (prepend(N ; PL); FL)

5

Figure 5. Blended cylinders warped using twist and
taper.

� else return (prepend(N ; PR); FR)

7. If N is Difference:

� if FL < �FR return (prepend(N ; PL); FL)

� else return (prepend(N ; PR);�FR)

Note that the field value will be the same as the one
returned by the standard tree traversal function (see sec-
tion 3.7) and the function may produce a path to a non–leaf
node.

Once the paths to the contributor nodes for an edge are
found they can be compared. If they are the same no further
action is required. If they differ the post–processing algo-
rithm is applied to create a new vertex on the surface. The
new vertex is then inserted into the mesh and new triangles
and edges are created to ensure mesh coherence as in [20].

This post–processing requires the field value and the nor-
mal to be calculated from a given path. To find the field
value at a point the path is traversed: any warp nodes are
applied to the point and the field value is calculated from
the last node. As in section 3.8 the normals can be calcu-
lated exactly or a numerical approximation can be used. If
exact normals are required the normal calculated from the
last node in the path must be transformed by the Jacobian
for each of the warp nodes in the reverse order of entry in
the path.

The object in figure 6 consists of 6 intersected planes that
form a rod with a square cross section, this is then twisted

Figure 6. Twisted rod of intersecting planes, right
images include CSG post-processing

along its axis. The left–hand image has not had the post–
processing step applied. The improvement is significant and
important for prototyping objects that use CSG operations.

5. Ray Tracing The BlobTree

Several methods exist for rendering implicit surfaces.
Indirect methods such as polygonization generate a set of
polygons that approximate the surface to a given tolerance.
However, polygonization might not be guaranteed and may
not detect disconnected or detailed sections of the surface.
Moreover with complex surfaces requiring a very fine poly-
gon mesh, the computation time for polygonization can be
comparable to the time taken to ray trace the same scene.
Polygonization is still a valid and useful prototyping method
since a polygon mesh of arbitrary density can be produced
for later viewing in real time.

Direct ray tracing requires the computation of the inter-
section of a ray and the surface. Let F (x; y; z) = 0 be the
implicit equation and r(t) = r0 + ∆t be the parameterized
ray. Intersections occur at points r(t) such thatF �r(t) = 0.

Interval analysis finds solutions by defining the function
F � r(t) and its derivative over intervals, and uses interval
analysis to bound those functions. 1

In our current implementation, we rely on Lipschitz tech-
niques [13]. A function is said to be Lipschitz if and only if
the magnitude of its derivative remains bounded, any bound
will be further denoted as L. The L–G equipotential surface

1In fact, we have also implemented a ray tracer whose ray intersection
scheme is based on interval arithmetic; a comparison of its performance
with the L–G ray tracer is left to future research

6

A

2A

0A

1

Figure 7. Space subdivision vs. bounding volume
subdivision

tracking is based on a recursive subdivision technique. L
and G bounds provide criteria for determining the existence
of none, one or possibly several roots in a given interval.

Tighter criteria using both first and second derivatives
have been proposed [9]. However those were not imple-
mented because it involves the computation of the Laplacian
of warp functions which would only be possible for a certain
class of these functions.

5.1. Evaluating the implicit function

The L–G surface techniques require two fundamental
procedures in the core of the ray tracer which are function
and derivative evaluation of the potential field at a point of
space.

The evaluation of the intensity at a given point of space
is implemented as a recursive tree traversal scheme, which
is the same as the one used in the polygonization algorithm.

The computation of the derivative may be performed in
two ways, either using an approximate discrete evaluation,
or using exact formulation of the derivative.

5.2. Efficiency concerns

There are several techniques for speeding up the surface
intersection algorithm:

� in general, finding accurate Lipschitz bounds speed
up the surface intersection;

� checking which elements contribute to the global po-
tential field at a given point, and disabling non con-
tributing elements along a ray also speed up the Blob-
Tree traversal.

Space subdivision techniques using cubic voxels or oc-
trees may cull parts of space with no contributing elements
or where no piece of the surface may be found [13], [9].

L

0
+

1A
+

A
-

T

f(t)

0A
-

1A

Figure 8. Interval creation through bounding boxes
ray tracing

We use a nested bounding volume scheme, that yields a
precise space occupancy description of the overall implicit
surface model. We have not yet compared this technique
with other spatial subdivision algorithms such as voxels or
octrees.

A bounding box is associated with each primitive and
each node. Each leaf bounding box keeps track of the Lip-
schitz bound of the primitive. The node bounding boxes
combine the Lipschitz bounds of their leaves according to
the node operator. The ray is first intersected with the bound-
ing boxes to check contributing elements along its path. This
technique fits the internal BlobTree representation of the ob-
jects.

5.2.1. Bounding box construction

The bounding boxes of the primitives are defined as the
bounding box of their volume of influence in space. There-
fore, the bounding box of a union or blending node is defined
as the bounding box of the union of the bounding boxes of
their children. The bounding box of an intersection is the
intersection of the bounding boxes. Because of its defini-
tion, the bounding box of the difference may be computed
with the previous rules.

Warp nodes deserve a special case. LetB be the bounding
box of a node N , and w the warp function applied to that
node. Whenever warp functions are continuous, we have
the following:

N � B) w(N) � w(B)

Our warp functions conform to the above. The compu-
tation of the bounding box of B(w(B)) is different for each
warp function.

5.2.2. Ray traversal

The ray surface intersection algorithm is modified as fol-
lows. First, we compute the intersection of the ray with the

7

Twist TwistScale

Union

Blend

Figure 9. The BlobTree which represents the candle-
stick in Figure 10

bounding box hierarchy so as to generate a set of intervals.
Each interval keeps track of its contributing element.

The BlobTree bounding box traversal is performed recur-
sively. Given a nodeN in the tree, we check the intersection
of the ray with its box. Several cases arise :

� if no intersection occurs, the recursion ends;

� if the node is a leaf, i.e. a primitive, the box in-
tersection interval is stored with a reference to the
contributing element;

� if the node is a binary node, i.e. a union, intersection,
difference or blending node, the ray intersection is
recursively performed on the children of that node;

� if the node is a warp node (but not a rotation, scaling
or translation), then the box intersection interval is
stored with a reference to the blob subtree.

Figure 10. A scene consisting of implicit surface mod-
els using the BlobTree

When a warp node is encountered, the bounding boxes
of its descendants may no longer be used (except in the
case of affine transformations). The reason why we store
a reference to the blob subtree when the node is a warp
operator is that the warp function may transform the ray
into a curved path. In our current implementation, affine
transformations are defined as a special subclass of warp
functions (as mentioned in 3.4.1), and in that case, the tree
traversal can be achieved. We are currently investigating the
possibility of subdividing this class of bounding box.

6. Results

The scene in figure 6 has been entirely built with Blob-
Trees. The wooden part of the hour glass is defined as a
super–elliptic blend between two polygon based primitives
and three twisted super–ellipsoids. The glass bulb is defined
as two blended spheres, with a slight tapering applied at the
top and the bottom.

The candlestick involves seven primitives: we used the
union of three cylinders to avoid blending between them,

8

Figure 11. A Stamingo

and applied a twist to this union. The top of the candlestick
uses super–elliptic blending with n = 4, so as to avoid an
amorphous shape, but keep the junctions smooth. The can-
dle itself is a twisted super–elliptic cylinder. Figure 9 shows
the BlobTree which represents the candlestick. The shelf
and the table are also BlobTrees, with unions of elements
based on polygonal skeletons. The image was rendered with
the L–G ray tracer, and the normals where computed with
Jacobian computation [6].

Figure 11 which shows a Stamingo (cross between a stork
and a flamingo) was ray traced using interval arithmetic[5].
It is built from 15 cylinders, 5 ellipsoids, 3 tapers, 5 bends
and a number of affine transformations. The tail is made
from a tapered cylinder that has then been bent. The head
is composed of an ellipsoid, the plumage and a tapered line
for the beak; all blended together. An ellipsoid was tapered
and bent twice to form the plumage. To finish off the head,
two eyes where added using union. The neck was shaped
using two bends, note that the head is also warped by these
bends so it remains attached to the neck.

7. Conclusions and Future Work

In this paper we have described our work on generalizing
an implicit surface system to treat blending, warping and
CSG operations in an homogeneous manner. This approach
enables complex models to be described which would be
very difficult to design using other methods. Local and
global space warps, particularly those based on the Barr
deformations are very useful in modeling and work well
with blends and CSG operations, simplifying the design of
a wide variety of models.

Warp functions can change the shape of the space in
which the models are embedded. The hierarchical structure

of the BlobTree would allow the introduction of warp func-
tions which affect texture and color spaces so that global
and local texture coordinates could also be warped.

[10], [11], [8] have suggested a graph relationship be-
tween elements, where nodes represent implicit surfaces
and edges represent the blending relationship, as a method
of solving the unwanted blending problem. This could be
combined with the BlobTree by labeling the graph edges so
that they specify the type of join between primitives. How-
ever where the unary warping operator would fit into this
scheme is unclear.

8. Acknowledgements

Acknowledgements have been omitted for the blind re-
view process.

The authors would like to thank the following re-
searchers; Kees van Overveld (Phillips Corps. and Uni-
versity of Eindhoven) especially for figure 4, Geoff Wyvill
(University of Otago), and Jules Bloomenthal (Microsoft)
for their very considerable contributions to this work over the
years, and John Cleary (Unveristy of Waicato) for some help-
ful remarks. We would also like to thank Samir Akkouche
for proof reading an earlier version of this paper. This work
is partially supported by grants from the Natural Sciences
and Engineering Research Council of Canada and also par-
tially supported by grants from the Centre Jacques Cartier.

References

[1] C. Blanc and C. Schlick. Extended field functions for soft
objects. In Implicit Surfaces ’95, pages 21–32, Apr. 1995.

[2] J. Blinn. A Generalization of Algebraic Surface Drawing.
ACM Transactions on Graphics, 1:235, 1982.

[3] J. Bloomenthal. Polygonisation of Implicit Surfaces. Com-
puter Aided Geometric Design, 4(5):341–355, 1988.

[4] J. Bloomenthal and B. Wyvill. Interactive Techniques for Im-
plicit Modeling. Computer Graphics, 24(2):109–116, 1990.

[5] J. G. Cleary. Logical arithmetic. Future Computing Systems,
2(2):125–149, 1987.

[6] R. Cook. Global and Local Deformations of Solid Primitives
. Computer Graphics (Proc. SIGGRAPH 84), pages 21–30,
July 1984.

[7] B. Crespin, C. Blanc, and C. Schlick. Implicit sweep objects.
In Eurographics ’96, volume 15, pages 165–174, Aug. 1996.

[8] E. Galin and S. Akkouche. Shape constrained blob metamor-
phosis. In Second Eurographics Workshop on Implicit Sur-
faces, Eindhoven, October 1996), pages 9–23. Eurographics,
1996.

[9] J.-D. Gascuel. Implicit patches: An optimised and powerful
ray intersection algorithm. In Implicit Surfaces ’95, Apr.
1995.

[10] M.-P. Gascuel. An Implicit Formulation for Precise Con-
tact Modeling Between Flexible Solids. Computer Graphics
(Proc. SIGGRAPH 93), pages 313–320, August 1993.

9

[11] A. Guy and B. Wyvil. Controlled blending for implicit sur-
faces. In Implicit Surfaces ’95, Apr. 1995.

[12] J. Hart. Sphere tracing: A geometric method for the an-
tialiased ray tracing of implicit surfaces. The Visual Com-
puter (in press), December 1996.

[13] D. Kalra and A. Barr. Guaranteed Ray Intersections with
Implicit Functions. Computer Graphics (Proc. SIGGRAPH
89), 23(3):297–306, July 1989.

[14] H. Nishimura, A. Hirai, T. Kawai, T. Kawata, I. .Shirakawa,
and K. Omura. Object Modelling by Distribution Function
and a Method of Image Generation. Journal of papers given
at the Electronics Communication Conference ’85, J68-D(4),
1985. In Japanese.

[15] A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko. Function
representation in geometric modeling: concepts, implemen-
tation and applications. The Visual Computer, 2(8):429–446,
1995.

[16] Ricci. Constructive Geometry for Computer Graphics. com-
puter journal, 16(2):157–160, May 1973.

[17] T. Sederberg and S. Parry. Free Form Deformation of Solid
Geometric Models. Computer Graphics (Proc. SIGGRAPH
86), 23(3):151–160, August 1986.

[18] L. Velho. Simple and efficient polygonization of implicit
surfaces. Journal of Graphics Tools, 1(2):5–24, 1996.

[19] J. Woodwark and A. Bowyer. Better and faster pictures
from solid models. Computer Aided Engineering Journal,
3(1):17–24, February 1986.

[20] B. Wyvill and K. van Overveld. Polygonization of Im-
plicit Surfaces with Constructive Solid Geometry. Journal
of Shape Modelling, 2(4):257–273, 1996.

[21] G. Wyvill, C. McPheeters, and B. Wyvill. Data Structure for
Soft Objects. The Visual Computer, 2(4):227–234, February
1986.

10

